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Perturbations on an interface driven by a strong blast wave grow in time due to a

combination of Rayleigh-Taylor, Richtmyer-Meshkov, and decompression effects. In this

paper, we present the first results from a computational study of such a system under

drive conditions to be attainable on the National Ignition Facility. Using the multi-

physics, AMR, higher order Godunov Eulerian hydrocode, Raptor, we consider the late

nonlinear instability evolution for multiple amplitude and phase realizations of a variety

of multimode spectral types. We show that compressibility effects preclude the
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emergence of a regime of self-similar instability growth independent of the initial

conditions by allowing for memory of the initial conditions to be retained in the mix-

width at all times. The loss of transverse spectral information is demonstrated, however,

along with the existence of a quasi-self-similar regime over short time intervals. Certain

aspects of the initial conditions, including the rms amplitude, are shown to have a strong

effect on the time to transition to the quasi-self-similar regime.

I. Introduction

The post-linear evolution of the Rayleigh-Taylor (RT) instability1,2 remains

incompletely understood. This is particularly true for multimode perturbations, which are

also the most important for practical applications in inertial confinement fusion (ICF) and

astrophysics. There is some evidence from theoretical,3,4 computational,5 and

experimental6 work that memory of the initial perturbation spectrum is lost as the

interface evolves into a self-similar regime in which the mix width grows in proportion

with the dominant transverse scale length. The existence of such a regime has yet to be

proven, however, even for the most fundamental case of incompressible fluids in a

uniform gravitational field. In addition, many physical systems of interest involve

compressible systems undergoing time-varying accelerations, where results obtained for

the idealized case do not necessarily apply. One class of such systems includes core-

collapse supernovae, in which strong blast waves propagate from near the star’s core up
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through layers of progressively less dense material.7,8 Each driven interface is susceptible

to both RT and Richtmyer-Meshkov9,10  (RM) instabilities.11 In addition, perturbation

growth results from material expansion in the large-scale velocity gradient behind the

shock front.12,13 Understanding the growth of the resulting turbulent mixing zone may be

required to explain the anomalously-fast transport of core material to the star’s

surface.7,8,14,15

In order to study this problem, a series of laser-driven laboratory experiments

have been designed and conducted on the Nova16 and Omega17 lasers,12,13,18-25 and

additional experiments are currently being planned for the National Ignition Facility26

(NIF). These experiments are intended in part to study the effect of the initial conditions

on the nonlinear instability growth, the time to transition, and growth of the post-

transition turbulent mixing zone for high Mach number blast-wave driven systems. In this

paper, we present computational results for a planer blast-wave-driven system under NIF-

like drive conditions. Using the multi-physics, AMR, higher order Godunov Eulerian

hydrocode, Raptor,27 we consider the late nonlinear instability evolution for multiple

amplitude and phase realizations of a variety of multimode spectral types. We show that

compressibility leads to a breaking of the self-similarity and allows for memory of the

initial conditions to be retained in the mix-width at all times. The loss of transverse

spectral information is demonstrated, however, along with the existence of a quasi-self-

similar regime over short time intervals. Aspects of the initial conditions, including the

rms amplitude and characteristic wavelength, are shown to have a strong effect on the

time to transition to the quasi-self-similar regime. Even different randomized amplitude
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and phase realizations of the same initial spectrum develop significantly different late-

time amplitudes and growth rates.

II. Code and calculation setup

The simulations are performed in 2D using the multi-physics radiation

hydrodynamics code Raptor, which uses a 2nd order (in space and time) Godunov method

applied to the Euler equations.27 Raptor is parallelized and uses adaptive mesh refinement

(AMR), making it well-suited to problems such as ours that require high resolution in

only a portion of the computational domain. We use the LEOS equation of state (EOS)

tables,28 and include in the calculations electron conduction but not radiation.

Our hypothetical target (see schematic in Fig. 1a) represents an extension of

previous and ongoing decelerating Rayleigh-Taylor experiments performed on the

Omega laser and discussed in detail elsewhere.25 The cylindrical target consists of a 150

µm plastic pusher section (density 1.42 g/cc) in contact with a less dense 2.2 mm payload

section. An initial perturbation is machined onto the contact-surface end of the pusher. In

place of the carbon foam payload used in the Omega experiments, we assume cryogenic

hydrogen with density 0.086 g/cc. We expect that this change, which is motivated by

uncertainties in the foam EOS tables,13 would not qualitatively change the results if

carbon foam was to be used in the actual experiments.

The width the computational domain was typically 200 µm, so that the 50 µm

wavelength in the previous 2D single-mode experiments corresponds to mode 4. The
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typical resolution is 512 cells in the transverse direction (512 ppb), corresponding to 128

points per wavelength (ppw) in mode 4. Resolution finer and coarser by up to a factor of

four in each direction was used in resolution studies that are detailed below. Open

boundary conditions are used in the parallel (to the shock) direction while periodic

conditions are specified in the transverse direction.

The end of the pusher opposite the perturbation is driven with a 1 ns laser pulse,

which launches a strong blast wave into the target. We assume a pulse energy of 25 kJ for

the NIF-like drive, which is five times greater than that used in the Omega experiments.

This higher laser intensity would provide significant drive over a longer period of time

than that achieved on previous experiments, and would allow for the generation of larger

transverse scales. This is important in part because bubble-merger pictures of multimode

instability evolution are generally thought to require multiple merger generations above

the largest significant scales present in the initial conditions before a stationary scale-

invariant bubble distribution is attained.5 A systems is said to have progressed through

one merger generation each time the characteristic transverse scale is doubled, so this

corresponds to scales at least an order of magnitude larger than the initial conditions.

The simulations are initiated with a high-velocity, heated, compressed slab with

characteristics taken from a laser-driven Lasnex29 simulation at the end of the laser pulse.

The Mach numbers of the incident and transmitted blast waves are in the range of

10-30, where the precise value depends on the degree to which x-ray preheat can be

controlled (the incident Mach number with no preheat would be about 60). The resulting

initial interface speed is about 130 µm/ns (see Fig. 1b). This is nearly twice the maximum

interface speed obtained in the Omega experiments,13 and the instability is seen to
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develop about twice as fast. The post-shock Atwood number remains nearly constant at

about 0.7. The simulations are continued out to a maximum of 40 ns, which is about the

latest time usable data has been obtained from the Omega experiments. Throughout the

duration of the experiment, the interface is RT unstable due to the reversal there of the

pressure and density gradients (typical pressure, density, and velocity profiles are shown

in Fig. 2).

An estimate of the relative importance of RM to the instability growth is obtained

from “pure RM” simulations driven by a steady shock with the same strength as that of

the blast wave at the time it reaches the interface. In fig. 3, the growth rate from a pure

RM calculation is compared to a blast-wave driven simulation. The same initial

perturbation – large amplitude mode 4 with a narrow gaussian small amplitude short

wavelength component (Fig. 4e and discussion below) – is used in both cases. The

perturbation growth is dominated by RM for about the first ns, while combined RT plus

decompression dominate at later times as the interface decelerates in the rarefaction

behind the shock front. This is consistent with CALE simulations of Omega-driven

systems in which the instability developed half as fast and RM was found to dominate for

twice as long.13

III. Characterization of initial conditions

When we speak of dependence on initial conditions, we have in mind the effect of

the initial perturbation spectrum on the observable properties of the mix region. During
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the linear regime when mode coupling can be neglected, this can be determined in a

straightforward manner from the linear (possibly time-dependent) growth rates. Well-

established mode coupling models make the weakly nonlinear regime fairly tractable as

well.30-32 Our interest is the effect of the initial conditions on the instability growth in the

strongly nonlinear regime; before, during, and after any transition to a self-similar or

turbulent state.

The principle observables during the deep nonlinear phase are the amplitudes and

growth rates of the spike and bubble fonts, and the statistical properties of the internal

structure of the mix region. The internal structure of the interface region is characterized

by spectra (density, kinetic energy, velocity, and enstrophy) and by the degree of small-

scale mixing of the two fluids.

The most general distinction we make in classifying initial spectra is between

continuous and bi-component spectra. Bi-component spectra include a long-wavelength

component and a separated (in k-space) short-wavelength component. In this study, the

long-wavelength component always consists of a single mode (mode 4) with a

wavelength of 50 µm and initial amplitude that is typically 2.5 µm. This is the same

mode used in ongoing Omega experiments that we have previously modeled

extensively.13 With its nominal initial amplitude, mode 4 is only marginally linear (a/  =

0.05). The post-shock amplitude, however, is an order of magnitude smaller. The bi-

component spectral class is particularly important for considering potential effects of

short-wavelength “noise” – possibly unresolved in calculations or not included in simple

experiments – on the large-scale interface structure.
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Five different spectral shapes were considered for the continuous class, and four

of these were also used for the short wavelength component of the bi-component class. In

a typical case, random phases were assigned to each mode and randomized amplitudes

were selected from the given spectrum. For example, a flat spectrum included modes 4 to

80 with random phases and amplitudes chosen from a uniform distribution. After the

amplitude assignment, the resulting spectrum is normalized to give the desired rms

amplitude – typically either about 2.5 µm (large amplitude case) or 0.25 µm (small

amplitude case). The other four spectral types include a short wavelength component

either with or without a single large amplitude long wavelength mode (mode 4) in order

to investigate the effect of short wavelength noise on a long wavelength primary mode.

The short wavelength component, which includes modes 20 to 80, is given by either a

narrow gaussian centered at mode 40 with half-width  4, a broad gaussian centered at

mode 40 with half-width 20, a hyperbolic (1/k) specrum, or a 1/k2 spectrum. Examples of

initial spectra and interface profiles are shown in Fig. 4. Multiple randomized amplitude

and phase realizations were generated from each spectral type in order to provide

information about the typical level of fluctuations of measurable quantities within each

spectrum.

We can characterize continuous spectra by their initial rms amplitude arms (or

<a>0), their characteristic wavenumber <k> (or characteristic mode number <m>), the

initial degree of linearity <ka>0, the initial spectral shape, and the width of the initial

spectrum k/<k>. For bi-component spectra, we can add to our parameter list the relative

rms amplitudes <a>0s/<a>0l, the relative widths of the spectral components ks/ kl, and

the separation of the relative two components <ks>/<kl> or (<ks> - <kl>)/(<ks> + <kl>). In
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the bi-component case, we focus in particular on the relative rms amplitudes and spectral

shape. The ratio of characteristic wavelengths is only varied from 9.25 (1/k2 spectrum) to

11.30 (broad gaussian), with the two components always well-separated in k-space (by an

order of magnitude). Since the width of the long-wavelength component is in every case

a single mode, all variation of the relative spectral widths is left to the short-wavelength

component. The initial spectral width can be thought of as one aspect of the spectral

shape, and was only considered in this context in the bi-component case.

A list of these parameters is given in Table 1 together with a brief summary of

their effect on the large-scale observables in the simulations. Not surprisingly, we found a

link between the two measures used to characterize the internal structure. The simulations

all exhibit a transition to a well-mixed state (a “2D mixing transition”) that is correlated

with a loss of transverse spectral information. Consequently, the effect of the initial

conditions on the nonlinear interface structure is represented simply as their effect on the

time to transition. Furthermore, transition results in changes in the spike and bubble

growth rates, so anything that affects the transition time also affects the perturbation

amplitudes and velocities. In the next sections, the information in Table 1 is developed in

detail.

IV. Results and discussion

A. Growth of the mix layer

Mix width history plots from 52 2D simulations are shown in Fig. 5. Most of the

various trajectories fall in to one or the other of two families. The upper family contains
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the runs with the large amplitude (2.5 µm) mode 4 in the initial spectrum with or without

a short wavelength small amplitude component. Short wavelength components included

in the plot are the narrow gaussian, broad gaussian, or hyperbolic spectrum, or by a single

mode 40. The rms amplitude in each case differs from the mode 4 amplitude by less than

1%. The lower family consists primarily of runs with the small amplitude short

wavelength component, with mean rms amplitude of about 0.25 µm. The standard

deviation from the mean rms amplitude is less than 5%, and the maximum deviation is

less than 50%. The small amplitude flat spectrum cases are also contained within the

lower family. The large amplitude flat spectrum cases initially lie slightly above the

upper family, but then fall below it at about 2-3 ns, eventually joining the lower family

between 10 and 20 ns. The two curves below the lower family are from runs with rms

amplitude of 0.025 µm (upper curve) and 0.0025 µm (lower curve).

Within the lower family, the amplitude is not well correlated with initial rms

amplitude variations at the few-percent level. Furthermore, the difference between runs

with different spectral shape (but similar initial rms amplitude) is generally not much

greater than the difference seen between different amplitude and phase realizations of the

same spectrum. This is illustrated in Fig. 6, which compares the bubble amplitude and

velocity evolution for several spectral shapes, including two random phase realizations of

the same narrow gaussian distribution without amplitude randomization (dotted lines).

Solid lines show the amplitude from simulations with a 1/k spectrum (upper solid), flat

(middle solid), and broad gaussian (lower solid). All five simulations begin with an rms-

amplitude of 0.258 µm. After 10 ns, the amplitude and velocity difference between the
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two narrow gaussian cases is greater than 25% and is at least as significant as the

differences arising from the various spectral shapes.

B. Phases of instability growth

In general, the instability evolution can be divided into three phases, as shown in

Figure 7. During the early-time phase (Phase I - which actually included the linear early

nonlinear, and into the nonlinear regimes), the growth rate is determined by the most

unstable mode. RM dominates initially, but only for about 1 ns. During this period, the

inverse cascade to larger scales is initiated, and there are up to three generations of

bubble merger. The growth rate depends on the rms amplitude, but does not depend

strongly on the spectral details. During Phase II, there are changes in the growth rates

(sometimes rather abrupt) that result in a strong dependence on the spectral details as well

as the initial rms amplitude. Consideration of separate spike and bubble amplitude

histories shows that the spike growth is more sensitive than the bubble growth to the

initial spectrum. These changes appear to be random and are not well correlated with

small changes in the initial rms amplitude or with the spectral shape.

Phase III begins when mode 1 emerges as the dominant transverse scale after up

to five bubble merger generations. After this scale is reached, the inverse cascade is

halted and the growth is no longer self-similar-like. One would tend to conclude at this

point that this signals the end of the calculation’s range of validity because the

computational box has been “filled” so that end effects corrupt further evolution. In fact,

calculations run with twice or even four times the nominal box size generally show no

significant change in the perturbation growth history and or the late-time dominant
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transverse scale (see Fig. 8).  We attribute this to the decaying nature of the driving

acceleration. As the acceleration approaches zero, the time to generate larger scales

(which even with constant acceleration take longer to form than shorter scales) tends to

infinity.  Thus the decaying acceleration profile coupled with the finite experiment

duration introduces an “effective box size” even in the absence of an experimentally or

computationally-imposed physical box size.

C. Quasi-self-similar regime

The main point in plotting all the amplitude trajectories together on one plot (Fig.

5) is to show that they generally diverge in time rather than converge as one might expect

during approach to a stationary self-similar bubble distribution. That is, there is no

apparent approach to a self-similar regime independent of the initial conditions. This is

true even if one considers only those runs from the lower family with only the short

wavelength component and with initial rms amplitude of about 0.25 µm. If one assumes

self-similarity (ie that the characteristic transverse scale is a constant fraction of the mix-

width) and takes into account the time-dependence of the acceleration and the large-scale

velocity gradient present in the zero-order hydro, then the spike and bubble growth in

each run can be characterized by a constant factor  (the  of h(t) = Agt2 models). In a

true self-similar regime, the value of this parameter should be a universal constant with

weak (if any) dependence on Atwood number.33 Within the arms = 0.25 µm, shorts only

subgroup, we instead find that bubble varies over a range of about 0.035-0.065 while spike

varies over 0.050-0.100. This nearly covers the entire range of values reported from

different experiments and simulations (see, for example, Ref. 34 and references therein),
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though it falls somewhat short of the values reported for spike growth at this Atwood

number (as high as 0.120).  Thus the assumption of self-similarity does not lead to a

useful means of characterizing the instability growth. Instead, memory of the initial

conditions is retained throughout the experiment at least in the mix width. Rather than

approaching a constant, the similarity parameter (the ratio of characteristic transverse

scale to perturbation amplitude) decays in time. The time dependence of the similarity

parameter is shown in Fig. 9 for various initial conditions, including examples of each

spectral type included in the study, with rms-amplitudes varying over three orders of

magnitude. A narrow gaussian with four times the nominal box width and three flat

spectrum calculations with twice the nominal box width are included to show that

variations in system size (boundary effects) do not change the general behavior of the

similarity parameter.

Because of decompression and drive decay, the asymptotic bubble and spike

velocities depend on the amplitude and time as well as on the transverse scale and the

degree of mix in the layer. The amplitude dependence arises because of the velocity

gradient, which is approximately proportional to r/t and characteristic of a rarefaction

fan. Here r is the distance in the parallel direction between any two points, in particular

the distance from the unperturbed interface to the position of the spike or bubble tip. Thus

the contribution of material decompression and stretching to the spike or bubble velocity

at a given time is proportional to its amplitude.

We have extended an existing statistical-mechanics bubble merger model35 to

include decompression and the time-dependence of the drive.36 Details of the model are
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presented in Ref. 36. We note here only that the model prediction (the red line in Fig. 9)

also shows a decaying similarity parameter and agrees well with the simulations.

However, there is apparently loss of transverse spectral information and a period

of “quasi-self-similar” growth. This is illustrated in two ways Fig. 10. Figure 10(a) shows

a time series of log density plots from a small initial amplitude simulation with a flat

spectrum (modes 4-80). During this period, which covers the first 10 ns of growth, the

inverse cascade to progressively larger scales is apparent. In Fig. 10(b), the images are

rescaled so that the mix-width appears approximately constant in time. The similarity in

interface structure in the rescaled images shows that the ratio of dominant transverse

scale to mix width does not change much over this time interval. Since the value of this

ratio does tend to slowly decrease over time as the material decompresses, we refer to this

as a “quasi-self-similar” regime.

Figure 10(c) shows log density plots from simulations with different initial

spectral types at early and intermediate times  (2.4 and 11.5 ns). Early on, the interface

structure is clearly correlated with the initial conditions. In particular, mode 40 is

apparent in the early-time narrow gaussian image. The later-time images, on the other

hand, appear far more similar to one other. As was noted previously, there is a wide

spread in the late time amplitude growth, but the dependence on spectral type within that

spread is generally not much larger than the variation between different realizations with

the same spectral shape.

The loss of transverse spectral information is illustrated more quantitatively in

Fig. 11, which compares average 1D density fluctuation spectra at t = 0 and t = 10 ns for

a variety of short-wavelength spectral shapes. The density fluctuation is defined by (z)
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= (z) - < (z)>, where < (z)> is the z-dependent transverse density average. Each

spectrum shown in Fig. 11 is the average of several (typically nine) 1D spectra evenly

spaced throughout the interior of the mix region. Despite significant differences in the

initial spectral shapes and rms-amplitudes, all transverse spectral information above

about mode 10 has been lost by 10 ns, and memory of the initial conditions is retained

only in the amplitudes of the long wavelength modes. For runs with the same initial rms-

amplitude, the low-mode end of the spectrum is also very similar, suggesting that only

memory of the initial amplitude and not the spectral shape has been retained. An inertial

range with Kolmogorov k-5/3 scaling is visible between modes thirty and eighty.

Transverse and parallel turbulent kinetic energy spectra and velocity fluctuation spectra

from the same simulations are shown in Figs. 12 and 13, respectively. The fluctuating

components of the energy and velocity are defined in the same way as the density

fluctuation: KEx,z(z) = KEx,z (z) - < KEx,z (z)> and | vx,z(z)| = |vx,z (z) - < vx,z (z)>|, where

“<>” again denotes transverse average and KEx,z = vx,z
2. In each case, the upper solid

curve is the parallel (z) component and the lower solid line is the transverse (x)

component. By 10 ns, the spectral shape depends weakly on the initial conditions, and

both transverse and parallel components exhibit a limited k-5/3 inertial range. In most

cases, the high-mode end of the spectrum is reasonably well approximated by a k-3

scaling.

Scaling laws for the energy spectrum of stationary 2D “turbulence” were first put

forward by Kraichnan, who considered an unbounded system into which energy is

uniformly injected at some wavenumber kinj.
37 At scales larger than the injection scale, he

predicted that an inverse energy cascade driven by vortex merger would result in a
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Kolmogorov k-5/3 scaling. Below the injection scale, a forward enstrophy cascade would

give E(k) ~ k-3. Recent experiments using flowing soap films agree with Kraichnan’s

predictions at both high and low wavenumbers.38

Thus our observation of an inertial range with  –5/3 scaling at lower mode

numbers and  –3 scaling at higher mode numbers indicates a transition to 2D turbulence.

After establishment of the quasi-self-similar regime, there is little change in the spectra

shape except for a steeper slope at the lowest modes [see Fig. 11(f)].

The RT instability can in principle inject energy into the system at all scales in the

density spectrum, but the growth of under-resolved modes is inhibited. The upper end of

the inertial range in the energy spectra in Fig. 12 corresponds to injection scales at modes

resolved by as little as 3 ppw.

The degree of “mixedness”, which Youngs calls the molecular mix fraction,33

provides a good measure of when the transition to the quasi-self-similar regime takes

place. The mixing parameter is defined by

f f dz

f dz f dz

( )1

1
, (1)

where f is the volume fraction of either of the two fluids, the averaging is done in the

transverse direction, and the integral is performed in the parallel direction through the

extent of the mix region. The mixing parameter time histories from all 52 2D simulations

included in Fig. 5 are shown in Figure 14. Again, most of the curves fall into one of two

families. The upper family contains runs without the large amplitude mode 4, while the

lower family consists of all the runs with the large mode 4.  In both cases, there is a clear

transition from a state that is not well mixed to a state with higher degree of mixedness
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that tends to an asymptotic value between about 0.6 and 0.8. With no large mode 4, this

transition occurs within a few ns, and corresponds to the transition to the quasi-self-

similar regime. The same transition occurs when the large mode 4 is included in the

initial spectrum, but the time to transition is several times longer. Thus the presence of

the long wavelength mode delays the transition to a turbulent-like state. Comparison of

Fig. 14 with amplitude history plots shows that, in addition to the increase in mixedness,

transition to the quasi-self-similar regime is marked by a decrease in the spike velocity

and often an increase in the bubble velocity. The spike velocity decreases in particular for

the runs with large-amplitude mode 4, where the transition is associated with the breakup

of the primary spikes. This breakup allows the spikes’ parallel energy to be diverted into

the transverse direction and results in a decrease in the effective Atwood number in the

mix region. When the initial spectrum gives an array of nearly identical bubbles,

transition can allow for bubble competition and the generation of larger scales, resulting

in an increase in the velocity of the bubble front.

The effective Atwood number reduction experienced by the spikes due to

increased mixing after their breakup results in an increase in the bubble to spike

amplitude ratio, shown in Fig. 15 for several representative cases. In the single-mode

(mode 4) case, the amplitude ratio approaches a value of about 0.48. This is just slightly

higher than the value of b s/ .0 42  predicted by a buoyancy-drag model assuming

that the spike reaches terminal velocity early on.5,39 With the spike interaction and

breakdown associated with transition to the quasi-self-similar regime, the amplitude ratio

is much closer to unity and typically greater than 0.7 at late times. The same tendency

towards spike-bubble amplitude symmetry due to spike breakup was reported by Youngs,
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who also noted an associated weak dependence of hb/hs on the density ratio.33

In a true self-similar regime (at least for the case of incompressible flow, no RM

component, and constant acceleration – all of which are violated here), the post-transition

mixedness should be a universal constant depending only on the Atwood number.33 For a

density ratio similar to ours (and with very weak density ratio dependence), Youngs

found in his 3D calculations that the asymptotic degree of mix increases at higher

resolution where the inertial range is better resolved. Extrapolating the observed trend to

infinite resolution, he reports a value of about 0.83 in 3D and 0.54 in 2D.40 Cook et al.

find similar values in their high resolution, classical RT calculations.41 The values we find

are distributed throughout this range, and are consistently higher than the reported 2D

value.

Finally, we note that there is no true turbulent mixing transition42 in the

simulations. This is to be expected due to the low effective Reynolds number and the 2D

nature of the simulations. Three dimensional turbulence is characterized by a forward

cascade of energy to smaller scales where it is eventually dissipated. Vortex stretching,

which is the mechanism of coupling to smaller scales, is fundamentally a 3D process and

therefore absent in 2D systems. However, the abrupt increase in mixedness observed in

the 2D calculations and associated with the onset of strong spike interaction and breakup

is reminiscent of a turbulent mixing transition. While spikes grow without interacting

with one another, their energy is directed almost entirely in the parallel direction. When

they interact and breakup, a significant fraction of their energy is diverted into the

parallel direction (see Fig. 16) and smaller scales are generated via the Kelvin Helmholtz

(KH) instability.43 Because of this forward cascade, a 2D system undergoing spike
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breakup in a sense temporarily mimics 3D turbulence, and there is an associated “2D

turbulent mixing transition”.

D. Resolution study

A resolution study was performed in order to verify adequate convergence of the

growth rates and interface structure at the nominal resolution of 512 points across the

computational domain (512 ppb). The resolution was varied from 128 to 2048 cells per

box width (ppb), or from four times less than to four times greater than the nominal

resolution. Log density plots [Fig. 17(a)] and perturbation amplitude histories [Fig. 17(b)]

from a series of calculations initialized with the same narrow gaussian (shorts only)

spectrum suggest that the mix width and interface structure are reasonable well-resolved

at 256 ppb. Even at 128 ppb, the mix width is only reduced by 15-25% relative to the

highest resolution case. This is impressive considering that, at 128 ppb, the initially

dominant mode (mode 40) is resolved to only 3.2 points per wavelength (ppw).

Considering the extreme drive strength and only marginally linear initial conditions, the

perturbation becomes nonlinear very quickly and the observed fast convergence is

perhaps due to the fast generation of larger, better resolved scales due to mode coupling30

and nonlinear interactions among spikes.43

A plot of the mixing parameter [Fig. 17(c)] as a function of time shows that, in

contrast to Youngs’s 3D calculations,33 there is more mixing at lower resolution where

the numerical diffusion is greater. The algorithm used to identify the spike and bubble

positions is based on the product of the volume fractions of the two fluids averaged over
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the transverse direction (the mix width is by definition bounded by the 2.5% points).

When the outlying spikes are more diffuse due to decreased resolution, the algorithm

identifies an edge that corresponds to a smaller spike amplitude. This is the primary

reason for the correlation between lower resolution and reduced amplitude.

Density, directed kinetic energy, and velocity spectra from a calculation at the

highest resolution (2048 ppb) are shown in Fig. 18. Results from a simulation at the

nominal 512 ppb resolution with the same narrow gaussian spectral shape are included

for comparison. For each quantity, the low-k end of the inertial range is about the same at

either resolution. The high-k end extends to much higher mode numbers in the 2048 ppb

case, consistent with its higher numerical Reynolds number and resulting in an inertial

range that spans about one decade. The minimum energy injection scale is at about mode

700, which again says that the driving instability injects energy into modes resolved by at

least 3 ppw.

E. Dependence of transition time on initial conditions

We have already seen how several of the factors listed in Table 1 affect the large-

scale instability evolution. In all stages of the instability, larger initial amplitudes give

larger amplitude later on. The initial shape of the short-wavelength spectral component

has little effect on the late-time growth, including the time to transition to a turbulent-like

state. This statement assumes, however, that the initial spectrum includes multiple modes

that are not both commensurate and in phase with one another. Without numerical or

physical sources of random noise, such spectra can only lead to a limited inverse cascade

that gives rise to stable periodic arrays of bubbles.
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We have also seen that there is a correlation between transition to the quasi-self-

similar regime, which is characterized by a loss of transverse spectral information, and a

“2D mixing transition” to a state characterized by a mixedness of 0.6 - 0.8. What remains

is to determine how the various parameters in Table 1 affect the time to transition.

There are several ways in which we can consider how the transition time to the

quasi-self-similar “turbulent” state depends on the initial conditions. In this section, we

will consider variations of the rms-amplitude (resulting in variation of <ka> in addition to

<a>), the effect of varying the short wavelength cutoff for a flat spectrum (variation of

<k>, <ka>, and k/<k>), the effect short wavelength “noise” on a long wavelength

primary mode (variation of spectral shape and <k>s/<k>l), and the effect of a long

wavelength mode on a short wavelength spectral component (variation of <a>s/<a>l).

1. Initial rms amplitude and nonlinearity thresholds

In order to quantify the dependence of the transition time on the initial rms-

amplitude, three simulations were run in which the peak of the narrow gaussian spectrum

(called a40) was varied over three orders of magnitude. The peaks of the initial spectra

considered were at a40 = 0.001 µm, a40 = 0.01 µm, and at the nominal value of a40 = 0.1

µm. This corresponds to an initial degree of linearity, expressed as a40/ 40, of 2e-4. 2e-3.

and 2e-2, respectively. In each case, the rms-amplitude was about 2.5 times greater than

then a40.

Results from the calculations are shown in Fig. 19. Regardless of the initial

amplitude, spike interaction begins when h/ 0  2. This nonlinearity threshold for spike

interaction is slightly greater with smaller initial nonlinearity h0/ 0. This could be due to
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the increased shock-deposited vorticity (RM) or increased instability Mach number in the

larger-amplitude cases, or a combination of the two. At the same time spike interaction

begins, the spike growth rate begins to saturate and the acceleration of the bubble front

begins to decrease. Spike breakup continues until h/ 0  5-6 (again somewhat greater for

perturbations initially more linear), at which point the mixing parameter reaches its

maximum value and the transverse density fluctuation spectrum has reached its

asymptotic form. This signifies the loss of initial transverse spectral information and the

emergence of the quasi-self-similar regime. At the same time, the post-transition

amplitudes and velocity is strongly dependent on the initial rms amplitude [see Figs.

19(d)-19(e)]. Spike and bubble velocities subsequently increase again as the inverse

cascade to larger scales progresses. The same sequence is followed for broader initial

spectra, without significant change in the nonlinearity thresholds for spike interaction and

transition.

2. Effect of short wavelength modes on large-scale interface structure

We are interested in the effect of short wavelength modes on the global instability

development for three primary reasons. First of all, some RT-unstable interfaces in real

systems [possibly including the Si/(C+O) interface in core-collapse supernovae]44 are

characterized by distinct long and short-wavelength spectral components. In order to

accurately describe the instability development in such systems, we must first understand

the importance of the short-wavelength modes.
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Secondly, simulations typically use initial spectra that do not extend all the way

down to the viscous cutoffs. If unresolved scales have a significant impact on the large-

scale interface structure, then such simulations are inadequate.

Finally, laser-driven instability experiments designed to study supernova

hydrodynamics are often limited in modal content, typically to no more than a few

prescribed modes plus small-scale noise. Since supernovae are presumably not so limited,

the experiments are not truly representative of their astrophysical counterparts if short

wavelength modes are important. In both cases, one system (a simulation or a laboratory

experiment) is employed to study a second physical system that may be less limited in

modal content, and it is important to understand the effect of the unresolved scales.

In this section, we consider the effect of short wavelength modes on the global

instability development in two ways. First, we vary the short wavelength cutoff in a series

of five simulations with initially flat spectra and observe the resulting variation in growth

rates and interface structure. The long wavelength cutoff is in each case mode 4, while

the short wavelength cutoffs included in the study are mmax = {80, 40, 20, 10, 4} (mmax =

mmin = 4 for the single mode calculation). This gives initial characteristic mode numbers

of <m> = {42, 22, 12, 7, 4}, and relative spectral widths of m/<m>  {1.8, 1.6, 1.3, 0.9,

0.0}. The initial rms-amplitude is set to 0.25 µm in each case, giving linearity parameters

<a/ >  {0.006, 0.005, 0.004, 0.003, 0.005}.

Log density plots at several times are shown in Fig. 20(a) from all but the single

mode simulation. There is more mixing early on when the initial spectrum extends to

higher mode numbers [see Fig. 20(b)], and the inverse cascade to larger scales proceeds

more rapidly. Amplitude history plots show that higher short-wavelength cutoff leads to
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faster growth during the first few ns but reduced growth at later times [see Figs. 20(c)-

20(d)]. The one exception to this pattern is the mmax = 80 case, which ends up growing

faster asymptotically than the mmax = 40 case due to the emergence of a large single dense

spike at about 25 ns.

These observations can be partially explained as follows: Spectra extended to

higher mode numbers initially give faster growth because of increased shock-deposited

vorticity (RM) and because the RT exponential growth rate k in the linear regime.

The dominance of high modes ends when the low modes become nonlinear and their

velocities begin to saturate at their terminal values. If there were no low-l modes in the

initial spectrum, or if their initial amplitudes were sufficiently small, then the growth of

low-l modes would be dominated by nonlinear interaction between high-l modes (mode

coupling).30 In our case, the initial amplitudes of the low-l modes are of order a/  ~

0.05/ N where the number of modes N varies from 1 to 81. When N is less than or of

order 10, the preexisting low-l modes become nonlinear within a few ns and mode

coupling does not play a significant role. This is evident in the mmin = 10 and mmin = 20

log density time series, in which it is apparent that the large wavelength structure at 11.4

ns is correlated with that at 2.4 ns. The difference in the late time growth rates is partially

a reflection of the initial amplitudes of the low-l modes that begin to dominate the growth

early on. These amplitudes are decreased when we increase the relative spectral width

k/<k> while holding the initial rms amplitude constant.

In addition to larger initial amplitudes in the long-wavelength modes, spectra with

lower high-mode cutoff give faster growth because they transition to turbulence later.

Consequently, they experience less of the density-gradient stabilization associated with
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enhanced mixing in the post-transition state. A modified mmax = 80 interface was

constructed to isolate the effect of enhanced mixing from the initial-amplitude effect. In

the modified initial spectrum, the first 7 modes in the mmax = 80 spectrum were simply

replaced with the spectrum from the mmax = 10 case. Because of this change, the initial

rms amplitude is just under 2 times greater than in the other cases, and the low l-mode

amplitudes are the same as in mmax = 10 case. Despite the increase in rms amplitude and a

large increase in the number of unstable modes, the post-transition growth of the mix

region is decreased rather than increased relative to the mmax = 10 calculation [see Fig.

20(e)]. In fact, the resulting late-time amplitude history lies below the mmax = 20 curve

and only rises above the mmax = 40 curve at about 12 ns. Thus the presence of the short

wavelength modes leads to a significant reduction in the nonlinear growth of the mixing

layer.

The opposite effect was found by Milovich et al. in simulations of NIF double-

shell ignition target designs.45 In the double shell targets, instabilities develop on a

metal/foam interface during capsule implosion. The perturbation spectrum was taken

from measurements of an Omega glass capsule, and a series of calculations was run in

which the number of modes was increased from about 40 up to several hundred. The

angular resolution was determined such that the shortest-wavelength mode in the initial

conditions was resolved to at least 20 ppw, and lmin was set to 12 in each case. The late-

time perturbation growth was found to increase with increasing lmax, with a particularly

dramatic increase when lmax was increased from 102 to 204. There are several differences

between their system and ours that might contribute to this discrepancy. First of all, the

number of modes is varied much more widely in their calculations than in our, and their
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initial spectrum falls off relatively slowly above mode 50. Since they do not renormalize

the initial spectrum each time, runs with more modes have greater initial rms amplitudes.

Secondly, modes in their initial spectrum are typically far more linear than ours. This

allows more time for short-wavelength modes to couple and generate larger scales during

the weakly nonlinear regime before saturation. The most significant difference, however,

is that their low-l modes do not have time to grow from the initial conditions up to

nonlinear amplitudes. With lmax = 54, the perturbations at ignition time (the end point of

the calculation) remain linear. Even with lmax = 102, the low-l modes appear to have

attained a degree of nonlinearity a/  ~ 1. When lmax is increased to 204, however, the late-

time perturbations are very nonlinear and scales larger than the initial conditions have

been generated. This indicates that significant mode coupling and associated pumping of

large scales to nonlinear amplitudes is possible only with lmax > 200. In our system, the

low-l modes do not have to rely on mode coupling in order to reach large amplitudes on

the time-scale of the experiment. Since the addition of shorter wavelengths does not

increase the initial rms amplitude by more than a factor of 2, its main effect is to hasten

the transition to a state with lower effective Atwood number and greater energy isotropy.

An extensive series of calculations was run to investigate the effect of short

wavelength modes on the evolution of a single long wavelength mode. The long

wavelength mode is mode 4, with nominal initial amplitude of 2.5 µm. The short-

wavelength component is bounded by modes 20 and 80, and typically has an rms-

amplitude that is 1/10 that of the nominal mode 4 amplitude. The shape of the short-

wavelength spectral component was either narrow gaussian, broad gaussian, hyperbolic

(1/k), or 1/k2 [see Fig. 4(a)]. A representative initial interface profile (with a 1/k short
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wavelength component) is shown in Fig. 4(e). Changes in spectral shape result in small

changes in the characteristic mode number of the short wavelength component, and hence

in the k-space separation parameter <k>s/<k>l, which varies over 9.25-11.30. These

simulations make up the upper family of amplitude history curves in Figs. 5(a) and 7(a)

and the lower family of mixing parameter curves in Fig. 14. The single-mode amplitude

history (no short-wavelength component) is the uppermost curve in the large-amplitude

family, indicating that the short-wavelength component reduces the late-time perturbation

growth by as much as 20%. Plots of separate spike and bubble amplitude histories (not

included) show that there is twice as much variation (about 30%) in the spike amplitudes

as there is in the bubble amplitudes (about 15%).

We found in section IV.A that the location of a given curve within the small-

amplitude family of Figs. 5 and 7 is not well correlated with the spectral shape. The same

is true for the bi-component upper family. Figure 21 includes amplitude history plots

from the single mode calculation, mode 4 plus hyperbolic shorts (with <k>s/<k>l =

10.75), and mode 4 plus broad gaussian shorts (with <k>s/<k>l = 11.30). The difference

in amplitude between the two mode-4-plus-shorts cases is characteristic of the differences

seen between different short-wavelength spectral shapes or different randomized

amplitude and phase realizations of the same spectral shape. Again, the shape of the

initial spectrum is not important in determining the late-time large-scale interface

structure.

The principle effects of short wavelength modes on the large-scale interface

structure are to increase the degree of mixing and accelerate the transition to the quasi-

self-similar “turbulent” state [see Fig. 21(a)]. Both of these effects involve the interaction
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and breakup of spikes and an associated significant reduction in the overall growth rate of

the spike front [see Fig. 21(b)]. The single mode spikes eventually break down as well

under the influence of a numerical noise that effectively adds a short wavelength

component. This happens later in time though, indicating that the rms amplitude of the

short-wavelength is important in determining its effect on the long-wavelength mode.

The late-time growth rate of the bubble front is increased if the breakup of spikes allows

for bubble competition and merger on what would otherwise be a stable periodic array of

bubbles [see Fig. 21(c)]. Because of the strong influence of the short-wavelength

component on the transition time, coupled with the strong effect of transition on the

global characteristics of the flow, systems comprised of a single mode or a few

commensurate modes make poor surrogates for real physical systems. For broadband

spectra, it appears that the presence and rms amplitude of the short wavelength

component but not its spectral shape are important. This suggests that computational or

experimental surrogates for systems dominated early on by long-wavelength modes need

not accurately reproduce the details of the short-wavelength spectral component as long

as the low l-modes are well resolved. Because this scenario might depend on the

dimension of the perturbation, we will consider in a later paper the effect of unresolved

modes on the evolution of 3D systems capable of undergoing a turbulent mixing

transition.

3. Variation of <a>s/<a>l

Finally, we consider the variations in the relative rms amplitudes of the long and

short-wavelength components. We ran a series of five calculations, each of which
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included the same narrow gaussian short-wavelength spectrum plus mode 4. The relative

amplitude parameter <a>s/<a>l was controlled by varying the mode 4 amplitude from 0.0

to 2.5 µm, with intermediate values of 0.025, 0.25, and 1.0 µm. The results are depicted

in Fig. 22. When the initial amplitude of mode 4 is less than or equal to the rms amplitude

of the short-wavelength component (<a>s/<a>l  1), the instability evolution closely

resembles the shorts-only case. The transition time in particular is not sensitive to the

presence or amplitude of mode 4 as long as its amplitude is small [see Fig. 22(b)]. When

the mode-4 amplitude is larger than <a>s, there is a qualitative change in the instability

development. Mode 4 begins to dominate the growth within a few ns, in a time that is

roughly equal to or less than the time required for the short-wavelength modes to reach

their nonlinearity thresholds and undergo transition. Shear that develops along the mode-

4 spikes and bubble as they grow into the nonlinear regime greatly inhibits the

development of small-scale structure and delays the time to transition [see Fig. 22(a)].

This delay contradicts what one would expect based on transition to shear-layer

turbulence, which should appear earlier along larger spikes due to their faster terminal

velocities and consequently higher Reynolds numbers. The same stabilizing effect was

noted and described by Ofer et al. in their discussion of the effect of a secondary long-

wavelength mode on a short-wavelength primary mode46, and is also visible in a

calculation by Youngs.5 The short-wavelength spectral component is in large part lost and

must be regenerated later after the mode-4 spikes reach their interaction and transition

nonlinear thresholds.
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V. Comparison with classical case

Some of the results we have found in our 2D, high-resolution simulations of blast-

wave-driven systems are applicable to classical RT systems, while others are not.

Potential sources of differences are the time-dependence of the drive and compressibility.

Compressibility effects include the RM contribution, moderately high instability Mach

number (up to M2 ~ 0.1 in our calculations), stretching of perturbations due to material

decompression, and the associated density gradient behind the shock front.

Our “effective box size”, which arises because of the decay of the driving

acceleration, is absent in classical systems. However, most if not all multi-merger-

generation experiments and simulations performed to date are affected by a physical or

computational box size at late times.

The process of spike interaction and breakup will likely proceed similarly in both

systems. However, we might expect to find lower nonlinearity thresholds in our case due

to shock-deposited vorticity and higher instability Mach number. From classical RT

simulations of Ofer et al., it appears that spike interaction begins at about h/  ~ 2-3.46

This might be slightly higher than our value of h/  ~ 2, but the difference seems too small

to be meaningful.

In planar blast-wave-driven systems, a true self-similar regime independent of

initial conditions is not possible due to decompression. We have found in its place a

quasi-self-similar regime that is limited in time and transverse scale due to drive decay.

Self-similarity in classical RT systems remains a possibility (but even there has not yet

been conclusively demonstrated), and we might expect a correspondence between

transition requirements in classical systems and the onset of quasi-self-similar growth in
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blast-wave-driven systems. Early rocket-rig experiments6 and simulations5 suggested self-

similar-like growth after about 2.5 generations of bubble merger. This is frequently

expressed as the requirement that transverse scales ten times larger than the most unstable

mode or the initial characteristic scale must be generated in order to transition to take

place. More recent water-channel experiments are also consistent with this requirement.47

After 2.5 merger generations, the initial characteristic mode 40 in our shorts-only

calculations has shifted to mode 7. According to Fig. 8, this occurs at about 6 ns. The

observed transition time, based on the mixing parameter or the loss of transverse spectral

information, is at about 3-4 ns or after just one merger generation. Again, this accelerated

transition is likely due to enhanced vorticity due to RM and very fast spike growth, both

of which might facilitate spike interaction and breakdown. In 2D calculations with

instability Mach number of the same order as ours (but without a shock), Glimm et al.

report spike interaction and transition to a “multiply connected structure” after about 1.5

merger generations.48 The fact that they consider this transition (and the resulting growth

rate reduction) to be an unphysical 2D artifact points to the need for comparison with

highly-resolved 3D calculations.

Despite the decreased drag on 3D objects and the suggestion that the post-

transition growth reduction in 2D calculations is artificial, early 3D classical RT

calculations by Youngs show reduced growth relative to the 2D case in the turbulent

regime.49 This reduction is likely due to increased dissipation in 3D, as suggested by

Youngs in the same paper. A similar effect has been observed in ongoing state-of-the-art

simulations by Cook et al., who consider the instability growth in terms of four

evolutionary stages.41 After a short period of independent modal growth, a mode-mode
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interaction phase begins when h/< > ~ 2 (equal to our threshold for spike interaction).

During this “weak turbulence” phase, the mixing parameter reaches a local maximum at

h/< > = 4.3 (similar to our peak at h/< > ~ 5). A second increase in the mixing

parameter occurs between h/< > ~ 8-19, which they call the turbulent mixing transition.

The mixing and similarity parameters appear to have reached their asymptotic values by

about h/< > = 19, which marks the beginning of a strong turbulence phase that extends to

the end of their calculation at h/< > = 30. In some of our 2D calculations, we too see a

second peak in the mixing parameter [see Fig. 19(b) for an example] approached over

about h/< > ~ 14-24. We find these parallels encouraging in light of the high-resolution,

high-order nature of the Cook et al. calculations along with our expectation that transition

should proceed qualitatively similarly in classical and blast-wave-driven systems. More

detailed comparisons, however, will have to await completion of our 3D blast-wave-

driven simulations.

VI. Conclusions

We have presented and discussed results from a series of over 70 2D high-

resolution AMR simulations of hydrodynamically-unstable interfaces driven by a strong

blast wave under NIF-like drive conditions. The mix-width time histories show no

apparent approach to a self-similar regime independent of the initial conditions. This is

due to decompression and drive decay, which result in an asymptotic velocity that

depends on the amplitude and time as well as on the transverse scale and the degree of
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mix in the layer. For sufficiently long but finite experiment duration, drive decay also

leads to an effective box size that sets a maximum transverse scale that can be generated.

After this scale is reached, the inverse cascade is halted and the growth is no longer self-

similar-like. There is, however, a period of quasi-self-similar growth after generation of

scales larger than the initial conditions but before the generation of the effective-box-size

scale.

The existence of the quasi-self-similar state and the drive-imposed effective box

size make the blast-wave-driven case distinct from classical RT. However, transition to

the quasi-self-similar state is very similar to its classical counterpart. In both cases,

transition is marked by an increase in the degree of mixedness, a decrease in the spike

velocity, and often an increase in the bubble velocity.

For continuous and bi-component (short on long) spectra, we have identified

several parameters that classify and characterize the initial conditions. We have

investigated how variations of a subset of these parameters can affect the observable

properties of the deep nonlinear instability evolution. We found, for example, that a long

wavelength mode can inhibit the development of small scales and delay the transition to a

turbulent-like state when its amplitude is larger than the rms amplitude of the short-

wavelength spectral component.

Most notably, apparently random variations observed in late-time amplitudes and

growth rates were not well correlated with initial spectral shape. The presence of the

short wavelength component is important for facilitating the transition to turbulent-like

flow, but its effect on the large scales does not depend strongly on its spectral shape.

Only the average properties are important, such as the initial rms amplitude and



34

characteristic wavenumber. This bodes well for simulations of similarly strongly-driven

systems that leave a portion of the short-wavelength end of the spectrum unresolved. As

long as the system contains some fast-growing and interacting modes that can be resolved

computationally or reproduced experimentally (and has the correct initial rms amplitude),

the late-time instability evolution will likely closely resemble the fully resolved or

complete system. This reaffirms the hope that laser-driven experiments can serve as

useful and relevant platforms for studying compressible mixing in supernova despite their

drastically more limited available range of scales. Similarly, carefully-designed

numerical simulations need not necessarily reproduce the full range of spectral details

present in their physical counterparts in order to reasonably reproduce the late-time large-

scale interface structure. These conclusions apply in particular to systems with long-

wavelength modes large enough in amplitude to reach the nonlinear phase early on.

It is important to remember that these conclusions are based solely on 2D

calculations and might be altered somewhat in 3D. In a later paper, we will extend the

discussion and analysis to high-resolution 3D simulations currently underway. This

analysis will include a discussion of the effects of initial conditions on the turbulent

mixing transition and the nature of the subsequent turbulent flow.
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Table 1:List of the parameters used to classify and characterize the initial spectral conditions and
a summary of their effect on the nonlinear instability evolution. See text for detailed explanation.

Not varied independent of
relative amplitude and shape

9.50-11.30
Not varied independent of
shape.

Not varied

Narrow gaussian, broad
gaussian, 1/k,1/k2

(< 0.001) - 0.1
Effect on bubble growth may
be opposite for multimode
long-wavelength component

0 - 1.8
Not varied independent of
<k>

Single mode, flat, narrow
gaussian, broad gaussian,
1/k,1/k2

<a/ > = 5e-4 - 5e-2
Sets thresholds for spike
interaction and transition.

<m> = 4-46

0.0025µm - 2.5 µm

Range of parameter
variation and Notes

InconclusiveInconclusiveRatio of spectral widths
ks / kl

Little effect over
range considered

Little effect over
range considered

Ratio of characteristic
wavelengths

<k>s/<k>l

Spectral shape of longs

Little effectLittle effectSpectral shape of shorts

DecreaseDecrease for spikes
and increase for
bubbles

Shorts/longs rms
amplitude ratio

<a>s/<a>l

Bi-component spectra
(long + shorts)

Decrease for given
kmin.

Decrease for given
kmin.Spectral width k/<k>

Little effectLittle effect

Spectral shape

DecreaseEffect contained in
individual
dependence on <a>
and <k>

Initial nonlinearity
<ka>

DecreaseDecreaseCharacteristic
wavelength <k>

DecreaseIncreaserms amplitude <a>

Continuous spectra

Effect of parameter
increase on:

Time to transition

Effect of parameter
increase on:
Perturbation
amplitudes and
growth ratesSpectral parameters



Figure 1: (a) Target schematic (not to scale). (b) Variation in time of
interface velocity and deceleration.
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Figure 2: Pressure, density, and velocity profiles (normalized to their maximum
values) after refraction of a 1D blast wave through a heavy-light interface in the
target. The Rayleigh-Taylor instability criterion is satisfied at the post-shock
interface, which is also Richtmyer-Meshkov unstable. The fluid velocity falls
off approximately linearly behind the shock front. The corresponding
decompression results in additional perturbation growth.

Shock
front

Interface

Less denseMore  dense

P•  < 0

Density

Pressure

Initial Density Profile

Velocity



Figure 3: Comparison of pure RM and blast-wave-driven
(RT+RM+decompression) growth rates suggest that RT+stretching
effects dominate after about 1 ns of instability growth.



Figure 4: (a) Initial spectral shapes and typical interface profiles: (b) hyperbolic
(1/k), (c) flat, (d) narrow gaussian, (e) and narrow gaussian with large-amplitude
mode 4.
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Figure 5: (a) Mix width histories and (b)
growth velocities from 52 2D simulations
with different spectral initial conditions.
There is no apparent approach to a self-
similar regime independent of the initial
conditions. Even when runs with large
mode 4 are excluded, b varies over a range
of about 0.035-0.065 for different IC’s,
while s varies over about 0.050-0.100.

(a)

(b)

Mode 4 included



Figure 6: Sensitivity of bubble (a) amplitude and (b) velocity to
spectral shape. Solid lines denote three initial spectra: 1/k [upper
solid in (a)], flat [middle solid in (b)], and broad gaussian [lower
solid in (a)]. The dotted lines denote two phase realizations of
the same narrow gaussian spectrum. In each case, the initial rms-
amplitude is 0.258 µm.
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Figure 7: Three phases of instability growth. Phase I: The early-time (linear, early
nonlinear, and into nonlinear) phase is dominated by RM for about 1 ns. The
growth rate is determined by the most unstable mode, and the inverse cascade is
initiated. Phase II: Changes in growth rate result in strong dependence on spectral
details in addition to the initial arms. Phase III: Mode 1 emerges as the dominant
transverse scale after up to 5 bubble merger generations. The acceleration profile
introduces an “effective box size”. The asymptotic velocity depends on amplitude,
time in addition to the transverse scale and the degree of mix in the layer.
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Figure 8: “Effective box size” imposed by the decaying nature of the drive
coupled with the finite duration of the experiment. With a box-size of L = 200 µm,
mode 1 emerges as the dominant mode at about t/t0 = 60 (24 ns). Even when the
width of computational domain is quadrupled, longer-wavelength modes do not
dominate at late times. After 25 ns, the time required to generate lower l-modes
exceeds the time remaining in the experiment. Both cases use the same narrow
gaussian spectral shape.
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Figure 9: Time-dependence of the similarity parameter. Because
of decompression, the similarity parameter decays in time rather
than approaching a constant asymptotic value. This behavior is
well-predicted by a statistical-mechanics bubble merger model
that includes decompression and the time-dependence of the
drive.
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Figure 10: Quasi-self-similar regime.  (a) A time series
of log density plots from a small initial amplitude
simulation with a flat spectrum (modes 4-80) shows the
inverse cascade to progressively larger scales. (b) The
same images are rescaled so that the mix-width appears
approximately constant in time. The similarity in
interface structure in the rescaled images shows that the
ratio of dominant transverse scale to mix width does not
change much over this time interval. (c) The loss of
transverse spectral information is illustrated by log
density plots from simulations with different initial
spectral types at early and intermediate times  (2.4  and
11.5 ns). Early on, the interface structure is clearly
correlated with the initial conditions. The later-time
images appear far more similar to one other.
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Figure 11: Loss of transverse spectral information. Density spectra at t = 0 and t = 10 ns for a variety
of short-wavelength spectral shapes: (a) Narrow gaussian with h0rms = 0.25 µm, (b) narrow gaussian
with h0rms = 0.0025 µm, (c) 1/k2 spectrum with h0rms = 0.25 µm, (d) broad gaussian with h0rms = 0.25
µm, and (e) flat (modes 4-80) with h0rms = 2.5 µm. (f) hyperbolic (1/k) spectrum with h0rms = 0.25. By
10 ns, all transverse spectral information above about mode 10 has been lost, and memory of the
initial conditions is retained only in the amplitudes of the long wavelength modes. For runs with the
same initial rms-amplitude, the low-mode end of the spectrum is also very similar, suggesting that
only memory of the initial amplitude and not the spectral shape has been retained. In (f), we include
spectra at 25 and 40 ns. After establishment of the quasi-self-similar regime, there is little change in
the spectra shape except for a steeper slope at the lowest modes.
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Figure 12: Transverse and parallel turbulent kinetic energy spectra at 10 ns. The upper solid curve is
the parallel directed turbulent kinetic energy and the lower solid line is the transverse directed
turbulent kinetic energy. (a) Narrow gaussian with h0rms = 0.25 µm, (b) narrow gaussian with h0rms =
0.0025 µm, (c) 1/k2 spectrum with h0rms = 0.25 µm, (d) broad gaussian with h0rms = 0.25 µm, and (e)
flat (modes 4-80) with h0rms = 2.5 µm. By 10 ns, the spectral shape depends weakly on the initial
conditions, and both transverse and parallel components exhibit a limited k-5/3 inertial range. In most
cases, the high-mode end of the spectrum is reasonably well approximated by a k-5/ scaling consistent
with a 2D forward enstrophy cascade.
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Figure 13: Transverse and parallel velocity fluctuation spectra at 10 ns. The upper solid curve is the
parallel velocity fluctuation and the lower solid line is the transverse velocity fluctuation. (a) Narrow
gaussian with h0rms = 0.25 µm, (b) narrow gaussian with h0rms = 0.0025 µm, (c) 1/k2 spectrum with
h0rms = 0.25 µm, (d) broad gaussian with h0rms = 0.25 µm, and (e) flat (modes 4-80) with h0rms = 2.5
µm. By 10 ns, the spectral shape depends weakly on the initial conditions, and both transverse and
parallel components exhibit a limited k-5/3 inertial range.

ng

1/k2

flat

h0rms = 2.5 µm

h0rms = 0.25 µm

h0rms = 0.25 µm

k-5/3

ng

bg

h0rms = 0.0025 µm

h0rms = 0.25 µm



Figure 14: Degree of mixedness for all 52 2D simulations included in Fig. 5.
Transition to quasi-self-similar regime results in an increase in mixedness.
For a similar density ratio, Youngs* reports  0.83 in 3D and  0.54 in
2D [D.L. Youngs, Lasers and Particle Beams, 12(4), 725 (1994)].
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Figure 15: Bubble to spike amplitude ratio:In the single mode 4 case, the amplitude ratio
approaches a value of about 0.48. This is just slightly higher than the value of 0.42
predicted by a buoyancy-drag model assuming that the spike reaches terminal velocity
early on. With the spike interaction and breakdown associated with transition to the quasi-
self-similar regime, the amplitude ratio is much closer to unity and typically greater than
0.7 at late times.
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Figure 16: Ratio of transverse to total kinetic energy, integrated over the mix region, from
the single mode 4 simulation. Below 15 ns, the relative transverse kinetic energy increases
slowly. The breakup of the mode 4 spikes at 15-20 ns corresponds to a much faster order of
magnitude increase.



Figure 17: Resolution study: The resolution is varied from 128 to 2048 cells per box  width (ppb),
or from four times less than to four times greater than the nominal resolution of 512 ppb. (a) Log
density plots and (b) perturbation amplitude histories suggest that the interface structure is
reasonable well-resolved at 256 ppb. (c) A plot of the mixing parameter as a function of time
shows that there is more mixing at lower resolution where the numerical diffusion is greater.
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Figure 18: (a) Density, (b) directed turbulent kinetic energy, and (c) directed velocity fluctuation
spectra at 0 and 10 ns for highest resolution (2048 ppb). The initial spectrum is narrow gaussian
with randomized amplitudes and phases. Spectra from a 512 ppb case with the same spectral shape
are included for comparison. In the energy spectra, dashed lines denote the k-3 scaling associated
with a forward enstrophy cascade in 2D turbulence.
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Figure 19: Dependence of amplitude growth and transition time on the initial rms-amplitude:  (a) Log
density plots show that spike interaction begins when h/ 0  2. (b) The mixing parameter peaks at
later times for smaller initial amplitude, coincident with the loss of initial transverse spectral
information. (c) Amplitude histories show that the transition to the quasi-self-similar regime occurs
when h/ 0  5-6. (d) Bubble and (e) spike velocity histories show that spike breakup results in a
reduction in the growth rate followed by accelerated growth after establishment of the quasi-self-
similar regime and the generation of larger scales. In (b)-(e), the spike interaction threshold h/ 0  2
is denoted by diamonds and the transition threshold h/ 0 = 5.5 is denoted by circles.
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Figure 20: Variation of short-wavelength cutoff for flat spectrum from mmax = 4 (single
mode) to mmax = 80. (a) Log density plots, (b) mixing parameter, and (c)-(d) amplitude
histories show decreased mixing and enhanced growth with lower cutoff when the initial
rms amplitude is fixed at 0.25 µm. (e) A modified mmax = 80 is constructed in which the
the first 7 modes are replaced with the spectrum from the mmax = 10 calculation. The
initial rms amplitude is increased by nearly 2 relative to the mmax = 10 , but the
amplitude is reduced to below the mmax = 20 result.
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Figure 21: Effect of shorts on long:  (a) Breaks the single-mode symmetry, resulting in (b)
reduction in late-time spike growth and (b) enhancement of the late-time bubble velocity.
(d) The net effect is an increase in the growth of the averaged amplitude. Amplitude plots
include single mode 4, mode 4 with hyperbolic shorts, and mode 4 with broad gaussian
shorts.

Single mode

Single mode

Bubble

Single mode

Spike

(a)

(b)

(c)

(d)

2.4 ns

5.2 ns

11.7 ns

Mode 4 + Z(k) ~ 1/k

2.3 ns

5.4 ns

11.3 ns

Mode 4

21.0 ns21.0 ns



Figure 22: Effect of long on shorts. (a) Suppresses early-time growth of small-scale
structure  and (b)  delays the transition to “turbulence”.
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